CHROM. 17 878

Note

Gas chromatography of bicyclo[n.4.0]alken-2-ones

A. GARCÍA-RASO*, M. A. VÁZQUEZ and P. BALLESTER

Departamento de Química Orgánica, Facultad de Ciencias, Universitat de les Illes Balears, 07071 Palma de Mallorca (Spain)

(First received March 15th, 1985; revised manuscript received May 6th, 1985)

Bicyclo[n.4.0]alken-2-ones are interesting intermediates for the synthesis of medium-size and macrocylic ketones by means of Eschenmoser fragmentation¹. Although studies of the chromatographic behaviour of bicyclo[n.m.0]alkanes have been carried out^{2,3}, few examples of bicyclo[n.4.0] systems have been reported^{2,3} and there appear to have been no studies on the chromatographic retention of bicyclo[n.4.0]alken-2-ones.

$$\begin{bmatrix} B & || A \\ CH_2 X & H \\ \hline 1 B & R=H \\ \hline 1 B & R=CH_3 \end{bmatrix}$$

The purposes of this work were as follows: (i) determination of the Kováts retention indices (I) of several bicyclo[n.4.0] alken-2-ones (1a and 1b) on a packed column coated with UCC at different temperatures and (ii) establishment of a valid general equation correlating accurately the Kováts retention indices with the number of carbon atoms (n), column temperature (t) and a structural parameter that selectively represents the two different kinds of bicycloalkenones studied.

EXPERIMENTAL

The bicyclo[n.4.0]alken-2-ones were synthesized and purified by a general method described in an earlier paper⁴. The general procedure of the synthesis is shown below.

0021-9673/85/\$03.30 © 1985 Elsevier Science Publishers B.V.

Retention indices of 1a and 1b were determined with a Hewlett-Packard Model 5830A chromatograph equipped with a Model 18850A integrator and a flame-ionization detector. A stainless-steel column (2 m \times 1/4 in. I.D.) packed with 10% UCC (Supelco) on Chromosorb P AW DMCS (60–80 mesh) was used. Nitrogen was used as the carrier gas at a flow-rate of 37 ml/min. The determinations were carried out at 220, 230 and 240°C with the injector and flame-ionization detector operating at 250°C. The bicyclic compounds were injected (0.3 μ g) as solutions in diethyl ether (3%, w/w).

Retention times were measured from the times of sample injection and the dead volume was determined by regression analysis from a series of *n*-alkanes using the procedure of Gröbler and Bálizs⁵. For all determinations, a homologous series of *n*-alkanes ($C_{10}-C_{24}$) was used.

RESULTS AND DISCUSSION

The retention indices of 1a and 1b are given in Table I.

A linear dependence between I and the number of carbon atoms (n), the column temperature (t) and the boiling point (t_b) can be observed in Fig. 1 for compounds 1a. Similar results were obtained for compounds 1b.

On the other hand, a comparison of compounds of the two series with the

TABLE I

RETENTION INDICES (1), INCREMENT OF METHYL GROUP [Δ (Me)], Δ I/°C AND BOILING TEMPERATURE (t_b)* OF BICYCLO[n.4.0]ALKEN-2-ONES ON UCC AT 220–240°C

No.	Compound		I(220°C)	$\Delta(Me)$) I(230°C)	∆(Me) I(240°C)	∆(Me) ∆I/°C	t _b (°C)
1 2	⟨ U _B ^R	$R = H$ $R = CH_3$	1338 1380	42	1346 1388	42	1354 1396	42	0.80 0.80	90 90–92
3 4	R	$R = H$ $R = CH_3$	1451 1489	38	1461 1498	37	1470 1507	37	0.95 0.90	98–100 98–100
5 6	C R	R = H R = CH ₃	1536 1570	34	1545 1579	34	1553 1588	34	0.85 0.90	110 115
7 8 (R O O	$R = H$ $R = CH_3$	2069 2105	36	2077 2105	38	2085 2124	39	0.80 0.95	160 180
9	CH3 CH3 R	R = H	1545		1554		1563		0.90	-

* Kugelrohr oven at 0.8 mmHg.

Fig. 1. Plots of I vs. total number of carbon atoms in ring B (n), I vs. column temperature (t) and I vs. boiling temperature (t_b) of bicyclo[n.4.0]alken-2-ones (1a).

same number of carbon atoms shows that an additional ring methylene group is responsible for a larger I increment than a methyl substituent.

All of the compounds studied have a very close values of $\Delta I/^{\circ}C$. The increment of a methyl group [$\Delta(Me)$] is very similar for all the compounds studied (see Table I). Hence, the behaviours of these two homologous series are almost identical and it is possible to obtain a general equation that represents the chromatographic behaviour of these compounds in the temperature range (220-240°C) studied:

$$I = 627.83 + 103.93n + 0.868t + P$$

$$N = 24; r = 1.000; s = 8.60; F = 25423.0; E = 0.41\%$$
(1)

where n = total number of carbon atoms in ring B, t = column temperature (°C), P = structural parameter [0 for R = H (1a) and 37.8 for R = CH₃ (1b)], N = total number of experimental points, r = correlation coefficient, s = standard deviation, F = experimental value of the Snedecor test and E = average relative error.

In summary, the gas chromatographic behaviour of these two homologous series of bicycloketones can be described by a single equation.

ACKNOWLEDGEMENT

The authors thank Dr. R. Mestres for helpful discussions.

REFERENCES

- 1 D. Felix, J. Schreider, G. Ohloff and E. Eschenmoser, Helv. Chim. Acta, 54 (1971) 2896.
- 2 W. Engewald, K. Epsch, Th. Welsch and J. Graefe, J. Chromatogr., 119 (1976) 119.
- 3 R. Besson and T. Gäumann, Helv. Chim. Acta, 56 (1973) 1159.
- 4 P. Ballester, A. Garcia-Raso en R. Mestres, Synthesis, in press.
- 5 A. Gröbler and G. Bálizs, J. Chromatogr. Sci., 12 (1974) 57.